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Wannier, Misner, and Schay have recently applied the Hellmann-Feynman molecular force theorem to
metals and found a mutual repulsion of the ions. They conclude that the extra charge along the nearest-
neighbor directions provided by computed Bloch wave functions is an order of magnitude too small to
provide binding and that nearly free-electron metals do not exist. We show that they have misapplied the
Hellmann-Feynman theorem and that nearly free-electron metals do exist.

T has been shown by Hellmann! and Feynman? that
the total force on an atomic nucleus in a molecule
is just equal to the electrostatic force originating from
the electrons and other nuclei. Wannier, Misner, and
Schay® (WMS) have applied the Hellmann-Feynman
theorem to obtain the generalized force dU/dq opposing
a lattice distortion in a simple crystal lattice of cubic
symmetry. They find*
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where Ze is the nuclear charge, N is the number of
atoms in the crystal, p(r) is the electron density, ¢ is a
generalized coordinate, and R;, the nuclear positions,
are the only quantities depending on ¢. In deriving (1),
periodic boundary conditions have been assumed in that
sums like >,/ |[R;—R;|~' have been replaced by
N >/ 1/R;. WMS noted that if the electron charge
density is a constant (free-electron model) and ¢ is
taken to represent a dilation, Eq. (1) yields a negative
force opposing the dilation, in other words a repulsion
between unit cells. They also determined dU/dq for
lithium from (1) using computed Bloch wave functions.
These functions produced a surplus of charge along the
(111) nearest-neighbor directions, which led to a force
opposing the dilation but which was an order of mag-
nitude too small to cancel the repulsive force. WMS
state that either present-day computed Bloch functions
are very poor and improved band calculations will yield
Bloch functions which when inserted in (1) will give
dU/3g=0 or that the entire Bloch band picture has a
qualitative defect which can be corrected only by con-
sidering strong correlation effects such as the Pauling
resonant bond® or the Wigner electron crystal. In either
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event, their conclusion is that nearly free-electron
metals do not exist.

It is the purpose of this note to demonstrate that
nearly free-electron metals do exist and that this is not
in conflict with the Hellmann-Feynman theorem. Note
that if ¢ is taken to be one component of the position
vector for a single nucleus in the crystal, Eq. (1) yields
0U/3g=0 for the free-electron metal, as it must, there
being no preferred direction for the force to act on a
nucleus within an infinitely periodic crystal. Thus we
find the paradox that each nucleus is at equilibrium,
but the crystal as a whole is not at equilibrium. This
paradox is easily resolved when we recall that the
Hermiticity of the Hamiltonian operator is vital to the
derivation of the Hellmann-Feynman theorem.? The
Hermiticity of an operator is defined only within a space
of functions all obeying the same boundary conditions.
In the present case those boundary conditions are just
the periodicity of the crystal.® Thus the Hellmann-
Feynman theorem may be applied to finite systems for
which the boundary conditions involve merely the
vanishing of the wave functions at infinity or to in-
finitely periodic systems to determine the forces aiding
or opposing nuclear displacements which do not affect
the periodicity of the system,” but not to strains which,
of course, change the periodicity condition.

For a finite crystal Eq. (1) is replaced by
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If ¢ is taken to be a component of one of the interior
R;, Eq. (2) can be reduced to Eq. (1), and 9U/d¢=0.
If ¢ is taken to be a component of one of the R; near
the surface of the metal and p(r) is either taken to be a
constant or calculated from Bloch functions, there will

6 The periodicity we refer to is not the cellular periodicity of the
crystal but rather the artificial cyclic boundary conditions
Riyn101=Riinsas=Riinzes=Ry, which were applied in order to be
able to neglect the actual crystal boundaries as was done in the
derivation of Eq. (1).

7 The displacement #; of a single nucleus does not affect the pe-
riodicity condition since one can take 9i4nie1 =140 =N14ngag=nl.
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exist an outward force on the ith nucleus due to the
multipole fields from all the inner unit cells. If, how-
ever, the nucleus is allowed to relax outward very
slightly from the center of its cell, it will feel an equal
force inward from the charge distribution in its own cell
and neighboring cells. Thus every nucleus in the crystal
will be in electrostatic equilibrium and the entire crystal
will also be in electrostatic equilibrium with respect to a
dilational strain.

Just because an equilibrium distribution of nuclei
within a particular electronic charge density distribution
can always be found, does not imply the crystal is at
equilibrium. The Hellmann-Feynman theorem also
requires that the charge density be calculated from
electronic eigenstates of the nuclear distribution. This
coupled with the fact that interior nuclei in a periodic
array always feel no force makes the theorem completely
impractical for determining the lattice constant of
metals. One could start with a periodic array with
lattice constant a,. If one could calculate eigenfunctions
for a finite crystal, one could then apply the theorem to
determine the forces on the nuclei near the surface.
Using these forces, one might estimate new positions
for the surface nuclei. If one could calculate eigen-
functions for this new nuclear distribution one could
apply the theorem again to get new values for the forces.
If ay were the correct bulk lattice constant, after several
interations one would locate the true equilibrium posi-
tions for the surface nuclei. On the other hand, if a, were

LEONARD KLEINMAN 1

not the correct bulk lattice constant, this surface
dilation would propagate further into the bulk of the
crystal with each iteration, and convergence to the
correct lattice constant would be interminable. There-
fore the equilibrium lattice constant of metals can only
be determined by maximizing the binding energy. Such
a calculation has been performed for aluminum.® The
conduction-electron wave functions were taken to be a
single plane wave orthogonalized to the core wave
functions. These core functions were calculated self-
consistently in the crystal using the complete Hartree-
Fock Hamiltonian. Except for the neglected band con-
tributions (i.e., the added binding energy obtained from
using exact Bloch eigenfunctions instead of plane
waves), the calculation is believed accurate to within
0.002 Ry. The total binding energy was found to be
4.06 Ry per ion at an equilibrium lattice constant
0.99a, where a, is the experimental lattice constant and
the experimental binding energy is 4.16 Ry per ion.
Less accurate calculations® using Bloch eigenfunctions
indicate that the band contribution to the binding is
about 0.10 Ry per ion. Thus we see that aluminum is a
nearly free-electron metal, differing from a completely
free-electron metal by less than 39, in the binding
energy. The Hellmann-Feynman theorem in no way
contradicts this.
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